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Abstract

Genome-wide association studies (GWAS) have identified many common variants associated with complex traits in human
populations. Thus far, most reported variants have relatively small effects and explain only a small proportion of phenotypic
variance, leading to the issues of ‘missing’ heritability and its explanation. Using height as an example, we examined two
possible sources of missing heritability: first, variants with smaller effects whose associations with height failed to reach
genome-wide significance and second, allelic heterogeneity due to the effects of multiple variants at a single locus. Using a
novel analytical approach we examined allelic heterogeneity of height-associated loci selected from SNPs of different
significance levels based on the summary data of the GIANT (stage 1) studies. In a sample of 1,304 individuals collected from
an island population of the Adriatic coast of Croatia, we assessed the extent of height variance explained by incorporating
the effects of less significant height loci and multiple effective SNPs at the same loci. Our results indicate that approximately
half of the 118 loci that achieved stringent genome-wide significance (p-value,561028) showed evidence of allelic
heterogeneity. Additionally, including less significant loci (i.e., p-value,561024) and accounting for effects of allelic
heterogeneity substantially improved the variance explained in height.
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Introduction

Genome-wide association studies (GWAS) have identified more

than one thousand common variants associated with complex

traits in human populations [1]. However, most identified variants

confer relatively small effects, and in combination explain only a

small fraction of phenotypic variance [2]. Using human height as

an example, a classic quantitative trait where an estimated

80,90% of the normal variation is attributed to additive genetic

factors [3–6], but the recently identified 180 SNPs by the GIANT

(The Genetic Investigation of ANthropometric Traits) study

account for only ,10% of the overall height variance [7]. The

same study also revealed two possible sources of missing

heritability. First, many common variants with small effects

contribute to phenotypic variation, though the strengths of

association of these variants do not achieve genome-wide

significance (p-value,561028). Second, multiple variants at a

single locus may jointly influence a trait (i.e. allelic heterogeneity)

and explain additional phenotypic variation.

The dissection of allelic heterogeneity is complicated by the

correlation between SNPs due to linkage disequilibrium (LD),

which often results in multiple SNP signals in any significant locus.

Usually, only the lead SNP (the SNP with smallest p-value) of a

locus is reported to represent the significant association. Some

GWAS have conducted conditional association analyses to identify

secondary signals associated with complex traits by accounting for

the effects of lead SNPs [7–9]. As an alternative, we propose an

analytical approach that estimates allelic effects and dissects allelic

heterogeneity from GWA summary data (p-values, allele frequen-

cies and sample size) rather than requiring individual-level data.

Using this method, we have examined allelic heterogeneity in

height loci that include SNPs of different significance levels based

on the GIANT summary data. To assess the extent to which

additional variance may be explained by incorporating multiple

effect SNPs at the same loci, we studied the variance explained in a

sample of 1,304 individuals collected from an island population of

the Adriatic Coast of Croatia. Our results indicated that a

substantial fraction of height loci showed evidence of allelic

heterogeneity and by including loci of lower significance and

accounting for allelic heterogeneity, we were able to explain a

considerably higher proportion of trait variance.
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Methods

Clustering significant height loci based on GIANT
summary data

The height summary data from the Stage I meta-analysis of

GIANT studies were downloaded from the GIANT consortium

website (http://www.broadinstitute.org/collaboration/giant). The

data file contains p-values, direction of effect, and number of

observations at nearly 2.5 M (2,469,635) genotyped or imputed

SNPs. Including SNPs with lower levels of significance may

increase the variance explained [7], therefore we examined SNPs

at six different levels of significance (a= 561028 to 561023). SNPs

meeting our significance criteria were clustered into distinct loci if

they were physically adjacent to one another; different lengths

(500 kb,50 kb) were used to define ‘‘physical adjacency’’ since

lowering the significance level substantially increased the number

of significant SNPs (Table 1).

Estimation of effect sizes and allelic heterogeneous
effects

The GIANT summary data do not include effect size estimates

(beta coefficients), therefore we first estimated the allelic effect (b)

of each SNP using the following approximation function:

b&
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p(1{p)n
p

where z is the z-score computed from reported p-values, and is

either positive or negative according to the reported direction of

effect. The reference allele frequency is denoted by p and n is the

number of observations (sample size).

Part of the observed effect at a SNP j may be due to the impact

of an adjacent lead SNP i with effect (bi). Assuming an additive

effect model, this part of apparent effect of SNP j (hereafter

referred to as projected effect) can be written as:

b�j ~bi

Di,j

pj(1{pj)

where Di,j is the linkage disequilibrium coefficient between the two

SNPs and pj is the frequency of the reference allele SNP j. Thus,

the allelic effect of SNP j conditioned on the primary SNP i can be

calculated as the difference between the observed effect and the

projected effect: bj
’~bj{b�j (hereafter referred to as conditional

effect). Accordingly, the ‘‘conditional p-value’’ of SNP j can be

approximated following equation:

Pj
’&2| 1{W bj

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj(1{pj)n

p� �h i

where W(:) is the standard normal cumulative distribution

function. For each significant locus, we selected the most

significant SNP as the primary SNP and estimated the conditional

effects and p-values of all adjacent SNPs using the above functions.

The SNP with the smallest conditional p-value was chosen as the

secondary SNP if the conditional p-value was less than a

Bonferroni-corrected significance level (0.05 divided by the

number of SNPs at the locus). By applying this procedure

iteratively (similar to stepwise conditioning), we also obtained

conditional effect estimates of tertiary and quaternary SNPs, until

conditional p-values were no longer significant. Since most

GIANT study samples are European in origin, we used allele

frequencies and linkage disequilibrium parameters calculated from

haplotype data of HapMap Phase 2 CEU samples (release 24)

[10].

Analysis of variance explained
To assess height variance explained, we used a study sample

derived from a genetic study of metabolic syndrome in a relatively

isolated population [11–14]. Briefly, study participants were

recruited from Hvar, a middle Dalmatian island on the eastern

Adriatic coast of Croatia. Blood samples and anthropometric data

were collected in two field seasons of May 2007 and May 2008.

For this study, we used the data on 1,304 individuals for whom

genome-wide SNP data and height measurements were available.

The study was approved by the Ethics Committee of the Institute

for Anthropological Research in Zagreb, Croatia and the

Institutional Review Board of the University of Cincinnati.

Written informed consent was obtained from all participants.

Genome-wide SNP genotype data were obtained using the

Affymetrix Human SNP Array 5.0 according to the manufacture’s

protocol. Genotype calls were determined using the CRLMM

algorithm [15,16]. After QC filtering (MAF.0.02, HWE p-

value.0.0001, call rate.95%), we performed genotype imputa-

tion using MACH [17] and the reference haplotype data from the

Phase 2 CEU HapMap, yielding a final genotype data set of 2.5

million SNPs in 1,304 individuals (565 males and 739 females).

We estimated the fraction of variance explained using genetic

scores that combine information from primary SNPs and

conditional SNPs selected from significant loci. The weighted

genetic score was constructed as S~
P

biGi; where Gi~0,1 or 2

Table 1. Numbers of significant loci and conditional signals.

Significance
level

Length of
context (kb)&

Number of significant loci
(primary signal)

Number (%) of significant
loci with secondary signal

Number (%) of significant
loci with tertiary signal

5.E-08 500 118 60 (50.8%) 26 (22.0%)

5.E-07 400 151 70 (46.4%) 31 (20.5%)

5.E-06 300 217 75 (34.6%) 31 (14.3%)

5.E-05 200 354 87 (24.6%) 34 (9.6%)

5.E-04 100 781 92 (11.8%) 24 (3.1%)

5.E-03 50 2668 48 (1.8%) 10 (0.4%)

&Lowering the significance level substantially increased the number (or the density) of significant SNPs used in clustering height loci. Therefore, shorter context lengths
were arbitrarily selected in defining ‘‘physical adjacency’’ when relaxed significance levels were used, which might artificially reduce the length of significant loci and
hence the chance of allelic heterogeneity in these loci clustered at lower significance level.
doi:10.1371/journal.pone.0051211.t001
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indicates the number of reference alleles for a specific SNP and bi

is the estimated allelic effect (for primary SNPs) or conditional

effect (for secondary and tertiary SNPs) . The variance explained

(r2) was then calculated based on a linear regression model using

the constructed scores as predictor and age-, gender-, and their

interaction term adjusted height residuals as outcome.

Results

To evaluate the validity of our proposed analytical procedure

for estimating effect sizes and allelic heterogeneity from GIANT

summary data, we first compared the concordance between our

estimated effect sizes with the reported effect sizes listed in the

GIANT meta-analysis report [7]. Of the 180 genome-wide

significant SNPs, our estimated allelic effects correlated near

perfectly (r2 = 0.98) with their reported values (Figure 1A and

Table S1). Of the 19 SNPs showing significant secondary signals

listed in Table 1 of [7], the conditional allelic effects estimated

using our proposed procedure correlated reasonably well

(r2 = 0.71) with their reported values (Figure 1B and Table S2).

These results demonstrated that our proposed method accurately

estimated effect sizes from the GIANT summary data (p-value,

allele frequency and sample size). By incorporating LD informa-

tion from HapMap (CEU), our procedure could also approxi-

mately dissect heterogeneous allelic effects (secondary or tertiary

signals) of a significant locus.

Using this procedure we evaluated the allelic heterogeneity of

significant loci that were associated with height at different

significance levels (Table 1), based on the GIANT summary data.

Approximately half of the 118 significant loci that achieved

stringent genome-wide significance (with p-value at the primary

SNP less than 561028) contained secondary signals (Figure 2A),

and approximately one fourth had tertiary or quaternary signals

after multiple rounds of conditioning (Figure 2B). All of the 18

regions with secondary signals reported by Lango Allen et al. [7]

were recovered by our method (Table S3). A close examination of

the significant loci with secondary signals revealed three additional

features of the observed allelic heterogeneity. First, half of the

identified secondary SNPs occurred within 200 kb from the

primary SNPs (Figure S1). Second, we did not observe consistent

LD between the primary and secondary SNPs (,10% of

secondary SNPs were in LD with primary SNPs with r2.0.1),

and third, there was no clear correlation between the estimated

effect sizes between the primary and secondary SNPs (Figure S2).

As anticipated, relaxing the significance level substantially

increased the number of significant loci. However, the percentage

of loci with significant secondary or tertiary signals declined as the

significance of the primary SNPs decreased (Table 1). For

example, when the significance level was set at 561026, only 75

(34.6%) of the 217 significant loci included significant secondary

signals, which was smaller than 50.8% – the percentage of

significant loci with secondary signals identified at more stringent

significance level (561028). This decline was mainly due to the

shorter sizes of the significant loci clustered by SNPs with lesser

statistical significance.

In our study samples, we assessed the extent of variance

explained in age and gender adjusted height using genetic scores

based on the estimated allelic effects of the clustered significant

loci. Height was normally distributed in both males (N = 565) and

females (N = 739) with larger variability observed in males (Figure

S3). In Table 2, we listed the fractions of variance explained by

various significant loci selected at different levels of significance,

with or without secondary and tertiary SNPs. As demonstrated by

Figure 3, two important patterns in the variance explained could

be identified. First, the fraction of variance explained increased

with relaxing the significance level, with the maximum around

561024. Second, additional proportion (,30%) of variance could

be explained by including secondary and tertiary SNPs. Adding

quaternary SNPs did not explain additional variance (data not

shown). In our samples, the highest level of variance explained

Figure 1. Correlation between reported and estimated effect sizes of the 180 primary height SNPs (A) and the 19 secondary SNPs
(B) reported by Lango Allen et al. * The reference study did not report the effect sizes of the secondary signals. Here we used the values
converted from the reported p-values based on conditional analyses in a subset of Stage 1 GIANT studies (Table 1 of Lango Allen et al).
doi:10.1371/journal.pone.0051211.g001
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Figure 2. Two example loci with allelic heterogeneity. (A) The GHSR locus included a secondary signal (rs7652177) after accounting for the
primary signal (rs572169). (B) The HMGA1 locus had a more complicated pattern of allelic heterogeneity; with significant secondary, tertiary and
quaternary signals after multiple rounds of conditioning (only the first round of conditioning is shown). The secondary p-values (bottom plots)
conditioning on the primary SNP were estimated from GIANT summary data using the analytical approach described in main text.
doi:10.1371/journal.pone.0051211.g002

Figure 3. Additional fraction of variance explained could be obtained by including less significant SNPs and secondary/tertiary
SNPs.
doi:10.1371/journal.pone.0051211.g003
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(13.8%) was achieved by the weighted-genetic score that included

primary SNPs with p-value,561024 as well as significant

secondary and tertiary SNPs. The proportions of variance explain

were constantly higher in females than in males (Table 2).

Discussion

GWAS have successfully established many robust associations

between common variants and human complex traits, yet the

extent of phenotypic variability explained by these variants

remains disappointingly low. In this study, we examined two

possible sources of missing heritability: first, variants associated

with height at non-GWA significance, and second multiple

variants at a single locus jointly influencing a trait.

Based on the summary data of the GIANT (stage 1) studies, we

clustered significant SNPs selected at different significance levels

into distinct significant loci and dissected the allelic effects of SNPs

at each locus using a novel analytical approach that accounts for

the LD between pair of SNPs. Compared to the reported results

[7], our proposed method accurately estimated the effect sizes of

primary SNPs and efficiently detected allelic heterogeneity in

many significant loci. We observed evidence of allelic heteroge-

neity in roughly half of the significant loci (60 out of 118) that

reached stringent genome wide significance (561028). All of the 18

regions with second signals reported by Lango Allen et al. were

recovered in our list. The larger fraction of loci with allelic

heterogeneity recovered by our method (,50% vs ,10% by

Lango Allen et al) may be due to the less stringent significance cut

off for secondary signals used in the current study. We controlled

multiple testing for each locus independently by a Bonferroni-

corrected significance level (0.05 divided by the number of SNPs at

the locus). Whereas, Lango Allen et al. used a more stringent

significance level (3.361027) for all of the 180 significant loci

simultaneously.

A recent paper by Yang et al. [18] reported a conditional and

joint association analysis of GWAS summary-level statistics and

using the GIANT summary data identified 36 loci with multiple

associated variants for height. Although targeting the same

analytical problem, our method differs from their approach. Yang

et al. used a multivariate approach to model the joint effects of

multiple SNPs simultaneously and estimated the conditional effect

iteratively over all the SNPs across the whole genome. Our

method is much simpler by only considering the LD between pair

of SNPs once at a time and detects secondary, tertiary SNPs in a

stepwise manner within each significant locus. Second, they

employed a stringent genome-wide significance level (561028)

aiming to robustly establish the significant association of the

identified SNPs. While our objective was to assess the proportion

of ‘‘missing heritability’’ that could be explained by allelic

heterogeneity and therefore, we controlled multiple testing for

each locus separately. Nonetheless, 33 of the 36 loci reported by

Yang et al. were included in our top list of 60 loci with multiple

associated SNPs (Table S3). The concordance of these results

again demonstrated the validity of our analytical method.

As demonstrated by Figure 2B, the allelic heterogeneity for

some significant loci might involve more than two effect variants

and span several million base pairs in length, covering multiple

genes. Even in the simple example (Figure 2A), the secondary SNP

(rs7652177) is located in a different gene (FNDC3B) than the

primary SNP (a synonymous SNP in GHSR). In addition,

rs7652177 is a non-synonymous SNP and might have functional

consequence. This complex pattern reflects the complexity of

allelic heterogeneity in complex phenotypes, which may go

beyond the traditional perception of allelic heterogeneity for

Mendelian traits as ‘‘different mutations within a single gene locus

cause the same disorder’’, in which a ‘‘gene’’ is usually interpreted

as a functional gene (e.g. protein-coding gene) with relatively clear

structural boundaries. This complex pattern of allelic heterogene-

ity also suggests that the search for causal variants in a significant

locus would require comprehensive examination of a broader

region that extends beyond individual gene with plausible

functional relevance. In addition, the primary and secondary

SNPs of a single locus were likely to cluster together, usually within

several hundred kb. However, there was no obvious LD or

correlation of effect sizes between these SNPs, which suggested

that, although physically adjacent, multiple SNPs might confer

their effects to a polygenic trait in a relatively independent

manner.

The 118 primary SNPs that reached genome-wide significance

(p-value,561028) explained 6.6% height variance and the 217

primary SNPs with suggestive genome-wide significance (p-

value,561026) explained 7.7% variance. These results agreed

closely with the proportion of variance explained in the same study

samples [19] using the 180 lead SNPs identified by the joint

analysis of Stage I+II GIANT studies. Consistent with previous

findings [7], including SNPs with less significant p-values increased

the variance explained in age- and gender- adjusted height

(Table 2 and Figure 3). The highest level of variance explained was

observed when the significance level was set between (561024 and

561023). This observation suggests that an appreciable fraction of

SNPs far from genome-wide significance might have small but

genuine effects, and including these SNPs could substantially

increase the variance explained. In addition, incorporating the

Table 2. Fraction of height variance explained.

Significance level Number of SNPs# All (N = 1304) Female (N = 739) Male (N = 565)

(1st) (+2nd) (+3rd) (1st) (+2nd) (+3rd) (1st) (+2nd) (+3rd) (1st) (+2nd) (+3rd)

5.E-08 118 178 204 0.066 0.085 0.092 0.081 0.095 0.107 0.051 0.075 0.078

5.E-07 151 221 252 0.071 0.091 0.091 0.084 0.102 0.100 0.059 0.081 0.082

5.E-06 217 292 323 0.077 0.096 0.101 0.104 0.117 0.120 0.052 0.076 0.083

5.E-05 354 441 475 0.072 0.095 0.105 0.092 0.112 0.118 0.053 0.078 0.092

5.E-04 781 873 897 0.113 0.132 0.138* 0.144 0.156 0.162* 0.084 0.109 0.116*

5.E-03 2668 2716 2726 0.116 0.123 0.127 0.145 0.153 0.156 0.088 0.095 0.099

#The number of SNPs used in constructing the genetic score. (1st): primary SNPs only; (+2nd): primary+secondary SNPs; and (+3rd) primary+secondary+tertiary SNPs.
*The highest level of variance explained was achieved by including less significant SNPs plus significant secondary and tertiary SNPs.
doi:10.1371/journal.pone.0051211.t002
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secondary or tertiary SNPs resulted an average increase of ,30%

in height variance explained (Figure 3). This percentage is

consistent with a recent report of allelic heterogeneity in cis-

expression quantitative traits [20]. Taken together, including less

significant SNPs as well as secondary and tertiary SNPs yielded the

highest level of variance explained (13.8%) observed in our

samples. Another interesting observation was the fractions of

variance explained in female samples were consistently higher

(,50%) than in male samples (Table 2). This difference might

partially be due to the larger variance in age- and gender- adjusted

height in male (SD = 6.9 cm) versus the female samples

(SD = 6.0 cm), or it might indicate intrinsic gender differences in

effect sizes of significant SNPs.

Our study has several limitations. First, we estimated the effect

sizes and allelic heterogeneity from summary data. The estimation

procedure is approximate and depends largely on the assumption

of additivity, including both additive allelic effects and between-

SNP additive effects, although this assumption is generally

supported by theoretical [21] and empirical data [7]. Second,

our estimation method can not explicitly distinguish genuine allelic

heterogeneity from multiple SNPs in partial LD with a functional

variant – the apparently ‘‘independent’’ effects might be projected

from a hidden functional variant. Third, because there is no

consensus definition of ‘‘significant loci’’, arbitrarily selected

lengths were used to cluster significant SNPs, which could break

down a continuous significant locus into small pieces if the length

definition was short (i.e. ,100 kb). Given these limitations, our

analytical approach can only be regarded as a rough evaluation of

the allelic effects of significant height-associated loci. Although we

have not tested the accuracy of our method, its validity is

supported by the increased variance explained in our independent

cohort when integrating the estimated allelic heterogeneity and the

close agreement between our results and those reported by Lango

Allen et al [7] and Yang et al [18] (Table S3). The detailed

dissection of allelic heterogeneity will require deep sequencing of

the significant loci to identify the real functional variants.

In summary, we have investigated allelic heterogeneity of

height-associated loci using an analytical approximation approach.

Our results demonstrated that a substantial fraction of significant

loci showed evidence of allelic heterogeneity and a significant

proportion may involve more than two effective SNPs. We also

examined the extent of height variance explained by the genetic

scores constructed based on the identified significant primary and

secondary/tertiary SNPs in a sample collected from an isolated

eastern European population. We confirmed that including loci

with lower significance levels and accounting for multiple variants

at a locus considerably increased the variance explained. We

anticipate that further analyses of allelic heterogeneity using

sequencing technology and more accurate estimation of allelic

effects through an elaborated analytical model will lead identifi-

cation of additional variants with independent effects, and in turn

increase the proportion of variance explained.
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Figure S1 Distribution of distance between the primary
and secondary SNPs.

(TIF)

Figure S2 Correlation between secondary effect and
primary effect.

(TIF)

Figure S3 Distribution of height in females (N = 739)
and males (N = 565).

(TIF)

Table S1 Effect sizes of the 180 height-associated SNPs reported

by Lango Allen et al. [Nature 467 (7317): 832–8].
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Table S2 Effect sizes and p-values of the 19 secondary signals

reported by Lango Allen et al. [Nature 467 (7317): 832–8].
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Table S3 The 60 significant loci with secondary signals (ordered

by p-value of the secondary signal).
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